

This sequence is being taught to years nine, ten and eleven in 2023-24. The Year seven and eight part of this sequence is no longer delivered as our current year seven and eight are on our new curriculum sequence (please see our other the long term plan document for these year groups. Unit numbering starts from the beginning of Y9 with previous content shown in a summary document

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2			
	Year nine							
C1 C2 P1 P2 B1 B2								
		Yea	r ten					
B3	B4	Р3	P4 C3 C4					
Year eleven								
Paper 1	P5	C5 & B5	Revision					

Legacy year 7 Long term plan

Our legacy year seven sequence started with a skills unit before covering the basics of separation techniques and looking at atoms, elements and compounds. Describe the three states of matter & link these to the properties of substances (inc. changes of state, melting and boiling points, Brownian motion & types of Chemistry transport) • Describe atoms, elements, compounds and mixtures and know the symbols and formula for these. Describe the structure of an atom (electrons, protons & neutrons) • Describe the difference between physical and chemical reactions • Describe the four separation techniques (filtration, crystallisation, simple distillation & chromatography) • Describe the structure of the periodic table (inc. the properties of metals and non-metals) Our legacy year seven biology sequence started by looking at the classification of organisms before moving on to food webs. The second term of biology work looked at microscopes and cells before studying specialist cells and levels of organisation Describe the 5 kingdoms and the classes of vertebrates and classify organisms using classification keys ٠ Link organisms using food chains & food webs and use this to describe the impact of one organism on another (including increases and decreases in ٠ Biology numbers & competition) Describe the environment and habitats of different organisms ٠ Describe the key parts of a microscope ٠ Compare and contrast animal and plant cells and prokaryotic and eukaryotic cells ٠ Describe the features of key specialised cells in the body (and stem cells) ٠ Link cells, tissues, organs and systems in terms of size. ٠ Our legacy year seven physics sequence started with force and energy before looking at motion using distance-time and velocity-time graphs Identify the different types of forces Physics Explain the impact of balanced and unbalanced forces on an object Calculate speed and interpret distance time graphs and velocity time graphs. ٠ Describe the different energy stores and how energy can be transferred from one store to another ٠ Describe efficiency and how energy can be lost during different energy transfers ٠ Disciplinary knoweldge developed: Students learnt how to: Define the three types of variable and identify them in a range of scenarios. They talked about accuracy and explained how this can be achieved in an experiment. They learnt how to use a microscope to examine plant and animal cells. Students studied classification in biology and chemistry (e.g. organisms into kingdoms/classes & substances into solids, liquids and gases or elements, compounds or mixtures).

Students also completed some simple investigations and learnt how to follow a simple method and select appropriate equipment for different separation technique

Analysis of data: Students learnt how to draw simple graphs to represent data (bar charts, line graphs with scales provided) and how to describe the relationship shown on a graph (distance-time or velocity time as examples)

Legacy year 8 Long term plan

structure and the formation of different rock types. Describe how elements are organised in the periodic table and common properties Chemistry • Describe exothermic and endothermic reactions Describe how to test for oxygen, carbon dioxide and hydrogen • Describe common reactions (metal & oxygen, metal & acid, combustion, acid & hydroxide and acid & carbonates) and write simple word & symbol equations for these Rank metals in terms of reactivity Describe the composition of the earth & some properties of each rock type. Our legacy year eight biology sequence started with food groups and digestion before looking at plant adaptions for photosynthesis. Our second term of biology looked at other human organ systems, building up to look at respiration. It finished by looking at different pathogens and how vaccinations and antibiotics could prevent or cure diseases. Describe the key food groups and the impact of balanced and unbalanced diets Biology Describe the key organs in the digestive food & explain the digestion of food. ٠ Describe photosynthesis and explain how a plant is adapted for this process. ٠ Describe the lungs & the processes of breathing & gas exchange ٠ Compare aerobic and anaerobic respiration ٠ Compare communicable and non-communicable diseases and how our body, life choices and immune system can protect us from these. ٠ Our legacy year eight physics sequence started with sound and light, including both reflection and refraction. The second term of physics focused on circuits before concluding with a series of lessons on magnets and electromagnets ٠ Describe how sounds are produced, travel and are heard. Physics Describe how light can be reflected and refracted giving examples in everyday life & drawing ray diagrams. ٠ Classify items as conductors and insulators ٠ Draw simple circuits identifying components ٠ Describe how current & potential difference can be measured & predicted in a series and parallel circuit. ٠ Describe the properties of magnets and draw magnetic fields. Disciplinary knoweldge developed:

Our legacy year eight sequence started by looking a the periodic table before studying chemical reactions. It finished with Earth science – covering the Earths

Students learnt how to: use standardised units for different measurements, write and test predictions, draw conclusions from data. They also learnt how to draw ray diagrams to represent investigations and how to draw circuit diagrams and diagrams of magnetic fields.

Students also completed some simple investigations and learnt how to follow a simple method and select appropriate equipment for different separation technique

Analysis of data: Students learnt how to identify anomalies, rank things in order by measurements of a property, draw simple graphs and analyse a line graph

Year 9 begins by exploring the arrangement of particles in a solid, liquid and gas and relate use this knowledge of their arrangement to explain properties such as boiling point and density. They will then learn about the differences between pure substances and mixtures and investigate how substances can be separated based on properties such as boiling point. Students zoom in on these particles and begin to learn about the structure of atoms and the properties of the proton, neutron and electron. Students will revisit the idea of changing theories by exploring the timeline of how our current model of the atom was developed where they look in more depth at the work of Rutherford and the alpha particle scattering experiment. Students will then learn about the different isotopes that exist and use this knowledge as a foundation for understanding what relative atomic mass is, building on their knowledge of atomic structure to calculate things such as relative atomic and formula mass. Students learn how the periodic table has changed over time due to the work of Mendeleev. This will lead students to begin to explore different groups in the periodic table and learn about the patterns of chemical and physical properties that exist within groups. Students will build on their earlier knowledge of atomic structure to explain these patterns. In Autumn 2, students start learning about ionic, covalent and metallic bonds. How each is formed and represented using different models.. Students will be introduced to the mole as a unit of measurement and will do simple calculations using this unit. We explore reactions of metals in detail and how to use knowledge of word and symbol equations to represent these reactions. Students will be introduced to the definitions of acids, alkalis and bases and apply their earlier knowledge of equations to represent neutralisation. Separate students will also carry out titrations to identify the concentration of an unknown acid or alkali. Finally, students will learn about the reactivity serie

Unit	C1	C2				
Unit title	Chemistry Fundamentals	Investigative Chemistry				
Big question/	What are substances?	What gives substances their properties?				
core concept	Core concept: Substance	Core concept: Bonding				
Relevant end	Students should understand that:	Students should understand that:				
points	 Most materials are mixtures of substances. 	✓ All matter is made of atoms. The arrangement and bonding between atoms explains a				
	 Materials made of single substances have distinct properties. 	substances properties. Bonding is the result of electrostatic attractions.				
Core	Describe the properties of solids, liquids and gases	Describe types of bonding and explain the properties of each class of substance				
substantive	Classify substances as elements, compounds and mixtures.	Represent substances and bonds between atoms using different diagrams				
knowledge	> Describe each separation technique & decide which to use in	Explain chemical reactions in terms of conservation of mass				
	given scenarios	Write word and symbol equations for common reactions				
	Describe the structure of the atom	Use moles as a unit of measurement				
	> Describe how the structure of the atom has evolved over time	Use moles to balance equations and calculate mass				
	> Describe how the periodic table is arranged and how this has	Calculate concentration				
	changed over time	Explain reactions in terms of oxidation and reduction				
	Describe the key properties and patterns of groups in the	Classify substances as strong or weak acids				
	periodic table	Describe neutralisation				
		 Explain the process of electrolysis 				
Core	 Chemists use models of the sub microscopic domain of substances 	s to explain the properties and behaviour of substances.				
disciplinary	• Chemists use a range of unique symbols, formula, nomenclature, o					
knowledge	• Substances can be classified into groups. This enables chemists to					
	• Data from chemical measurements can be used to identify trends.					
	• Provides evidence to test ideas. There are a range of qualitative an	d quantitative investigative techniques.				
	• Chemistry requires skilled use of specialised equipment. This inclu					

In Year 9, students build on ideas of conservation introduced in chemistry and begin to explore the idea of conservation of energy. Students will learn about different stores of energy and how these stores change in open and closed systems. Students will begin to use calculations to represent these changes quantitatively and will use this knowledge to understand the relationship between different variables in an equation. Students will then look more broadly at the Earth's energy resources and evaluate the advantages and implications of using these resources. Next, students will learn how energy is transferred in the form of waves and learn the differences between transverse and longitudinal waves and investigate the reflection and refraction of these waves through different mediums. Students will then learn about the electromagnetic in terms of the differing properties, uses and potential dangers of each wave. In Spring 2, students will start to explore how objects move and how this motion may be changed due to the effect of forces. Students will begin by looking at different types of forces and the effects they can have on objects before looking in more detail at weight and gravitational force. Students will learn what a resultant force is, and the role it plays in the motion of objects. Students will apply this knowledge to a range of systems and learn how to represent these forces in free body a vector diagrams. Students will then focus on how the speed and velocity of objects may change over a period of time and analyse graphs representing this motion. Students will then explore each of Newton's laws of motion, applying these to different systems and carrying our calculations to represent the numerical relationships between different quantities. Students will carry out investigations into Newton's third law of motion and Hooke's law and represent their results graphically. Finally, students will learn about momentum and how this impacts our knowledge of safety features.

Unit	P1	P2					
Unit title	Energy and Waves	Forces					
Big question/	How does information and energy spread?	Why do things move and change?					
core concept	Core concept: Waves and Energy	Core concept: Force and Energy					
Relevant end points	 Waves, including sound, water and electromagnetic waves transfer energy and information. 	 Changing the motion of an object requires a net force to be acting on it. Calculating the "energy" stored in a system allows us to make predictions about how much change is possible. This is because energy is always conserved but some energy is always dissipated into smaller and less useful stores. 					
Core	Identify energy stores and transfers	Identify different types of force					
substantive	 Use equations to complete calculations 	 Explain the effect of a resultant force on an object 					
knowledge	Describe renewable and non-renewable energy sources and	Use Newton's Laws to predict and explain the motion of an object					
	compare these	Describe magnetic fields and the effect they have on objects					
	> Describe the properties of waves using appropriate scientific						
	terminology						
Core	• Aims for the most fundamental explanations that apply in widest ra	ange of situations					
disciplinary	Explanations include tests which support or disprove the idea.						
knowledge	Explanations are based on observations and experimental measurements						
	 Arguments are developed from data, discussed and debated 						
	 Many explanations use models to think with and use to make predi- 	ctions					
	 Many models can be expressed as mathematical formulas 						

In Year 9 students look in depth at different types of cells. Students build the foundation of knowledge to learn how tissues, organs and organ systems are specially adapted to carry out important processes inside living things in year 10. Students will learn the role of mitosis and meiosis in producing new cells and importance of producing cells with the correct number of chromosomes. They are then introduced to stem cells and the important role they can play in research and treatment of disease as well as exploring some of the implications of using them. We learn how the development of the microscope has allowed us to see cells at higher resolution and this has led to a better understanding of how living things function. One example of this is through our knowledge of DNA and the role it plays in inheritance. Students will learn the structure of DNA and explore how DNA is arranged and its role in passing on genetic information to offspring. Students will use Punnett squares to predict the outcome of genetic crosses and apply this to sex determination and genetic conditions such as cystic fibrosis and polydactyly. Students explore the debates about how cloning techniques can be used in research, medicine and in agriculture. We then look at how living things interact through communicable diseases. Students explore how we prevent these pathogens from entering before looking at the role of white blood cells in destroying pathogens that enter. They will also learn about what vaccines are and how they provide us with immunity against diseases. Students will then learn how medicines are discovered and developed through explore the brain, the eye and plants in more detail.

Unit	B1	B2				
Unit title	Cell Biology	Communicable Disease				
Big question/	What are living things made of?	What keeps organisms healthy?				
core concept	Core concept: Cellular basis of life	Core concept: Health				
	How do organisms grow and reproduce?					
	Core concept: Inheritance					
Relevant end points	 ✓ The cell is the basic unit of life from which organisms emerge. Organisms are adapted to survive in their environment. Multicellular organisms have different levels of organisation to maintain the conditions for life ✓ Organisms reproduce by passing their genetic information from one generation to the next. How an organism develops depends on its genome and its environment. 	 Health results from interactions between an organism's body, behaviour, its environment and other organisms. 				
Core substantive	Identify types of cells and how these link to form tissues, organs and systems.	Describe different types of disease, how these can be caused, treated and prevented.				
knowledge	Explain how to use a microscope and compare the different types of microscopes linking to what they are used for.	 Describe ways in which organisms prevent pathogens from entering. Explain how the immune system protects us from pathogens. 				
	 Describe mitosis and meiosis. 	 Describe how new drugs are made. 				
	> Describe the role of stem cells in organisms and medicine.	Analyse data on disease.				
	 Describe the structure of DNA and its role as our hereditary material. 	, ,				
	Construct genetic diagrams to show how characteristics are inherited.					
Core	Biologists collect data in a variety of settings including field work. Variables in	n biology can be difficult to control.				
disciplinary	Different biologists study life at different levels. From biological models to po	opulation of organisms				
knowledge	Biologists have to carefully consider how specimens are sourced and treated	-				
	Observations and data can be analysed and interpreted quantitatively and quantitatively quantitat					
	A cycle of collecting and analysing data provides evidence that biologists use					
	 Biologists communicate about their work with a range of audiences within an decision-making. 	nd beyond the scientific community, to facilitate evidence-informed debate and				

	Autumn 1	Autumn 2 Spring 1 Spring 2		Spring 2	Summ	er 1	Summer 2			
Торі	Topic: Chemistry Fundamentals		opic: Investigative Chemistry	Topic: Physics - Energy and	Topic: Forces		Topic: Cell Biology		Topic: Communicable Diseases	
-	,			Waves						
Knowledge:		Knowledge:			Knowledge:		Knowledge:		Knowledge:	
1.	Changing states of matter	1.	Ionic bonding	Knowledge:	1.	Scalar and vector	1.	Types of cells	1.	Viral diseases
2.	Atoms and elements	2.	Ionic compounds	1. Energy stores and energy		quantities	2.	Specialised cells	2.	Bacterial diseases
3.	Compounds and formulae	3.	Properties of ionic compounds	transfers	2.	Types of forces	3.	Tissues, organs and	3.	Fungal and protists
4.	Pure substances and	4.	Covalent bonding	2. Open and closed systems	3.	Weight		systems	4.	Our barriers to diseases
	solutions	5.	Simple covalent molecules	3. Work done	4.	Resultant forces	4.	Introducing	5.	The immune system
5.	Separation techniques	6.	Giant covalent structures	4. Power	5.	Vector diagrams (Higher		microscopes	6.	Vaccinations
	(Demonstration)	7.	Fullerenes and Graphene	5. Efficiency calculations	5.		5.	RP: Using	7.	Medicines
6.	RP Chromatography P1	8.	Nanoparticles (Separate only)	6. Insulation	c	only) Second and using its		Microscopes	8.	Multiplying bacteria (Separate
7.	RP Chromatography P2	9.	Metallic Bonding	7. Investigating thermal	6.	Speed and velocity	6.	Types of microscope		only)
8.	Changing Atomic Theories	10.	Comparing and contrasting	insulators (Practical – R for	7.	Distance time graphs	7.	DNA	9.	Culturing microorganisms
9.	Protons, Neutrons and		types of bonding	Separate only)	8.	Acceleration and	8.	The structure of DNA	10.	Investigating Antiseptics (part 1)
	Electrons	11.	Word and symbol equations	8. Gravitational potential		deceleration		(separate only)		(Practical – R. separate only)
10.	Electron configuration	12.	Balancing equations	energy	9.	Velocity time graphs	9.	Protein synthesis	11.	Investigating antiseptics (part 2)
11.	Isotopes and relative	13.	Conservation of mass	9. Kinetic energy	10.	Terminal Velocity		(Separate only)		(Practical – R. separate only)
	atomic mass	14.	Introducing moles (Higher	10. Elastic potential energy	11.	Newton's first law	10.	Mitosis and the cell	12.	Antibiotic resistance
12.	Development of the		only)	11.Multi-step calculations	12.	Newton's second law		cycle	13.	Developing new drugs (part 1)
	periodic table	15.	Metals and oxygen	(GPE/KE/EPE/Efficiency)	13.	Inertia and inertial mass	11.	Incredible stem cells	14.	Developing new drugs (part 2)
13.	Mini Quiz 1		(Demonstration)	12.Non-renewable resources		((higher only)	12.	Therapeutic cloning	15.	Monoclonal antibodies
14.	Ions of metals and non-	16.	Metals and acid	13.Renewable resources	14.	Investigate Newton's	13.	Cloning plants		(Separate only)
	metals		(Demonstration)	14.Comparison of energy		Second Law of motion (R.		(separate only)	16.	Scatter Graphs and Health
15.	Uses of metals	17.	Metals and water	resources		Practical) Part 1	14.	Cloning animals	17.	Frequency tables and histograms
16.	Corrosion (Separate only)		(Demonstration)		15.	Investigate Newton's		(Separate only)	18.	Analysis data
17.	Corrosion prevention	18.	Redox reactions (Higher only)	15.Mini Quiz	15.	Second Law of motion (R.	15.	Sexual and Asexual	19.	Mini Quiz
	(Separate only) (Practical)	19.	Acids and bases					reproduction	20.	Plant diseases (Separate only)
18.	Transition metals	20.	Strong and weak acids (Higher	16.Introduction to waves	10	Practical) Part 2	16.	Evaluating types of	21.	Parts of the brain (Separate
	(Separate only)		only) (Demonstration)	17.Wave Speed equation	16.	Newton's third law		reproduction		only)
19.	Properties of transition	21.	Neutralisation	18.Calculating period of a	17.	Stopping distances	17.	Meiosis	22.	The Eye (Separate only)
	metals (Separate only)	22.	RP: Making Salts P1	wave	18.	Factors that affect	18.	Inheritance (genetic	23.	Myopia and hyperopia (Separate
20.	Alloys	23.	RP: Making Salts P2	19. RP: Measuring speed of a		thinking distance		cross diagrams)		only)
21.	Uses of alloys (Separate	24.	Reactivity series and	wave using a ripple tank (Part	19.	Stopping distance graph	19.	Sex determination		
	only)		displacement reactions	1)		(Separate only)	20.	Family trees		
22.	Alkali metals		(Practical)	20. RP: Measuring speed of a	20.	Momentum (higher only)	21.	Genetic diseases		
	(Demonstration)	25.	Half equations for	wave using a ripple tank (Part	21.	Momentum calculations				
23.	Halogens		displacement (Higher only)	2)		(higher only)				
24.	Noble Gases	26.	Reactivity series and extraction	21. Measuring the speed of	22.	RP - Relationship				
25.	Gas tests		methods	wave using a piece of string		between force and				
	(Demonstration/Practical	27.	Electrolysis of molten	22. Types of Electromagnetic		extension (Part 1)				
26.	Mini Quiz 2		compounds (ionic half	Waves	23.	RP - Relationship				
			equations - higher only)	23. Properties and Uses of	201	between force and				
		28.	Electrolysis of aqueous	Electromagnetic Waves		extension (Part 2)				
			compounds (ionic half		24					
			equations - higher only)		24.	Magnets Magnetic fields				
		29.	RP Electrolysis		25.	Magnetic fields				
					26.	Electromagnets				

In Year 10 students learn that all living things need to respire and explore the substances they need for this reaction (oxygen and glucose) as well as the harmful waste products (such as carbon dioxide). Students also begin to learn the role that plants play in transferring energy from the Sun through photosynthesis. Students will explore the substances required by plants for this process (light energy, carbon dioxide and water) as well as the products (oxygen and glucose). We are introduced to the idea of surface area to volume ratio and the role this plays in an organism's ability to exchange substances efficiently. We then look at specially adapted exchange and transport systems in both plants and animals and within these systems, we explore the transport mechanisms through which substances move in and out of cells, namely diffusion, active transport, and osmosis. Students are introduced to the factors that affect the rate of these types of transport and begin to apply this understanding to the adaptations that exchange, and transport systems have in order to maximise this rate and meet its respiratory and photosynthetic needs. Students will learn the role that enzymes play as biological catalysts in helping organisms to break down larger molecules so that they can be transported, exchanged, and then used by cells. We will explore the factors that affect the rate of these enzyme-controlled reactions and lay the foundations for understanding why conditions inside cells must be controlled, which is explored further in year 11. Students studying the Separate course will also explore how the kidneys are adapted to remove waste products such as urea. We then look at how energy is transferred through living things through feeding relationships and the interactions between organisms within an ecosystem, including through the water and carbon cycles. We will also learn about human activities that are impacting on ecosystems as well as on these cycles. Students will also explore the methods ecologists use to measure

Unit	B3	B4				
Unit title	Human Biology	Plant Biology				
Big question/ core concept	What are living things made of? Core concept: Cellular basis	Why do organisms depend on each other and their environment? Core concept: Interdependence				
Relevant end points	 The cell is the basic unit of life from which organisms emerge. Organisms are adapted to survive in their environment. Multicellular organisms have different levels of organisation to maintain the conditions for life for all their cells. 	 Organisms compete with and depend on other organisms for the materials and energy that cycle through ecosystems. A change to one population, or environmental condition can have a huge impact on biodiversity. 				
Core substantive knowledge	 Compare and contrast types of respiration. Describe how the lungs, heart and blood are designed for efficient respiration. Describe how food is digested including the role of enzymes. Link digestion to rates of reaction. Describe how the kidneys function (separate only). Describe the three types of transport. 	 Use and interpret food chains and webs to describe the relationship between different organisms. Describe how sampling can be used to describe the distribution of organisms in an ecosystem. Explain how photosynthesis is used to produce food within plants and the factors that can affect this process. Describe the effect of hormones in plants (tropisms, germination) (separate only). Describe how carbon and water are transferred from one form to another. 				
Core disciplinary knowledge	 Biologists collect data in a variety of settings including field work. Varia Different biologists study life at different levels. From biological models Biologists have to carefully consider how specimens are sourced and tr Observations and data can be analysed and interpreted quantitatively A cycle of collecting and analysing data provides evidence that biologist 	s to population of organisms reated during research				

In year 10 students will learn how energy and information can be transferred in the form of waves. They will explore a range of both transverse and longitudinal waves and observe and measure how they behave during reflection and refraction. Students will gain an understanding of how the properties of these waves make them both useful and harmful to humans. Students will then explore the particles that make up substances and make links between the arrangement of these particles and properties such as density and pressure. Students will explore how our understanding of the atom has changed over time and will appreciate how observations and measurements by scientists have changed our theories over time. We will then look at how to measure the energy changes that take place when substances are heated up and change state and carry out calculations to determine this energy change. Students will then explore the behaviour of radioactive isotopes and learn about the properties of alpha, beta and gamma and how these relate to their hazards and uses. Students will model the behaviour of this radioactive decay and use data from graphs and tables to calculate properties such as the half-life of radioactive decay. In Spring 2, students will explore how energy is transferred in electrical circuits through learning about current, potential difference and resistance. They will observe and measure these factors in both series and parallel circuits and investigate the relationship between them in different Ohmic and non-Ohmic conductors. Students will then learn how this energy is transferred to homes using the national grid. Finally, students will learn about our place in the universe and explore how large objects such as planets, stars and satellites interact due to gravitational force. Students will learn how the life cycle of a star is dependent on its size and the role that stars play in providing Earth with heavier elements through nuclear fusion.

Unit	P3		P4					
Unit title	Wav	es, Particles and Radioactivity	Electricity and Astrophysics					
Big question/ core	How	<pre>v does information and energy spread?</pre>	What is electricity and magnetism?					
concept	Core	e concept: Waves and Energy	Core concept: Electromagnetism					
	Wha	at is matter?	Where are we in space?					
	Core	e concept: Matter	Core	concept: Space				
Relevant end	✓	Waves, including sound, water and electromagnetic transfer energy	✓	The movement of charge forms electric current and causes magnetic fields. We				
points		and information.	,	use electrical currents to power our society.				
	✓	The world is made of matter and all matter is made of particles. The	\checkmark	The Earth is a tiny part of an unimaginably large universe. All mass in the				
		particle model can be used to explain how matter behaves. All matter is		universe attracts other mass with a gravitational force. We can use the idea of				
	_	made of atoms which are made of smaller, sub atomic, particles.		gravity to explain how the universe is changing.				
Core substantive	\succ	Describe the EM spectrum	\triangleright	Draw electrical circuits.				
knowledge	\succ	Describe the properties of light & how light is reflected, refracted	\triangleright	Explain how to measure current and potential difference and predict these				
		(separate only).		values in different circuits.				
	\succ	Describe how unstable radioactive substances emit radiation.	\triangleright	Classify components and Ohmic or non-Ohmic				
	\succ	Calculate half-life and link this to use and risk.	\succ	Describe the properties of mains electricity and how electricity is moved around				
	\succ	Compare densities of different substances.		the country using the national grid.				
	\succ	Describe pressure in gases (and liquids – separate only)	\triangleright	Describe the solar system (separate only)				
	\succ	Calculate specific heat capacity and latent heat and link to heating and	\triangleright	Describe the life cycle of a star (separate only)				
		cooling curves.	\blacktriangleright	Describe The Big Bang Theory and our evidence for this (separate only)				
Core disciplinary	•	Aims for the most fundamental explanations that apply in widest range o	fsituat	tions				
knowledge	• Explanations include tests which support or disprove the idea.							
	 Explanations are based on observations and experimental measurements 							
	Arguments are developed from data, discussed and debated							
	Many explanations use models to think with and use to make predictions							
	Many models can be expressed as mathematical formulas							

In Year 10 students learn that chemical reactions involve a transfer of energy that is either endothermic or exothermic. They will understand that scientists can observe and measure this change. Students will revisit the idea of rate by learning how different factors affect the rate of chemical reactions. They will observe changes in rate both qualitatively and through taking quantitative measurements, which will then allow them to analyse rates of reactions graphically and make predictions about how the rate will be affected when different factors are changed. Students will then be introduced to the idea of reversible reactions by making observations and through exploring theoretical reactions. They will apply Le Chatelier's principle to a range of reversible reactions and use this to predict the outcome on the yield of different substances. Students will also learn the law of conservation of mass and use this to balance symbol equations. They will also learn the importance of the mole as a unit of measurement to chemists and use this to calculate the mass of different substances. Separate students will also carry out tests and make observations in order to identify the presence of different ions during reactions. Throughout the first unit, students will move from looking at isolated reactions to applying their knowledge to reactions carried out on a mass scale in industry. In the second unit, students start to look more broadly at the relationship between chemistry and our Earth. They will start by learning how the composition of the atmosphere has changed over time and draw on their knowledge from B2 to understand the important role that plants and algae play in this. They will learn about the ways in which we can reduce this impact and evaluate different processes and products through the lens of environmental, economic, social and ethical perspectives.

Unit	C3	C4				
Unit title	Reacting Substances	Humans and The Earth				
Big question/ core concept	What is chemical change? Core concept: Chemical change	How does chemistry affect our world? Core concept: Chemical Earth What is the Earth made of and how is it changing? Core concept: Dynamic Earth				
Relevant end points	 In chemical reactions atoms are rearranged to form new substances. The new substances produced will have different properties from the substances they are formed from. Mass and energy are always conserved in chemical changes. 	 ✓ Substances can move within and between Earth's atmosphere, hydrosphere, geosphere and biosphere as part of large-scale Earth systems. Chemical substances produced by human activity are changing our planet. ✓ The structure of the earth is slowly changing. The Earth provides us with a rich source of resources 				
Core substantive knowledge	 Describe exothermic and endothermic reactions quantitatively and qualitatively Explain how chemical cells work (separate only) Describe and explain the effect of different factors on rates of reaction. Explain how reversible reactions work and the effect of different factors on these (Le Chatelier's principle) Calculate relative formula masses and moles. Use a titration to calculate concentration (separate only) 	 Describe the composition of the Earth's atmosphere and how this has changed over time. Describe the impact of humans on the Earth including global warming, use of water, and creation of sewage. 				
Core disciplinary knowledge	 Chemists use models of the sub microscopic domain of substances to exp Chemists use a range of unique symbols, formula, nomenclature, diagram Substances can be classified into groups. This enables chemists to identify Data from chemical measurements can be used to identify trends. Provides evidence to test ideas. There are a range of qualitative and quan Chemistry requires skilled use of specialised equipment. This includes chemister 	ns and equations. y patterns and trends. titative investigative techniques.				

Autumn 1		Autumn 2			Spring 1		Spring 2		
1.	Aerobic respiration				: Nuclear and Thermal Physics		Topic: Electricity and Astrophysics		
2.	Anaerobic respiration	1.	Food webs	Know	ledge:	Know	ledge:		
3.	Lungs and Ventilation	2.	Ecosystems	1.	Types of EM Spectrum	1.	Electrical Circuits Introduction		
4.	Gas Exchange	3.	Predator and Prey	2.	Properties and uses of electromagnetic waves	2.	Calculating current and Charge Flow		
5.	Fermentation	4.	Ecological Sampling techniques	3.	Investigating IR radiation (R.Practical)	3.	Current in Series and Parallel Circuits		
6.	The Heart	5.	Quadrats (R.Practical)	4.	Reflection of light (Separate only)	4.	Potential Difference in Series and		
7.	Blood vessels and Blood	6.	Distribution of Species (Separate only)	5.	Refraction of light		Parallel Circuits		
	flow	7.	Pyramids of biomass and tropic levels	6.	Investigating reflection and refraction of light (separate	5.	Ohm's Law		
8.	Blood composition		(Separate only)		only) (R.Practical)	6.	Resistance in Series and Parallel Circuits		
9.	CHD	8.	Decomposers (Separate only)	7.	Lenses (Separate only) (Demonstration)	7.	RP Resistance of a wire (Part 1 and 2)		
10.	Non communicable	9.	Plant cells, tissues and organs	8.	Magnification (Separate only)	8.	Light Dependent Resistors		
	disease	10.	Osmosis	9.	Colour (Separate only)	9.	Thermistors		
11.	Disease data 1	11.	Osmosis in action	10.	Atoms (recap)	10.	RP IV Characteristics Part 1		
12.	Mini quiz	12.	RP Osmosis 1	11.	Changing atomic theories (recap)	11.	RP IV Characteristics Part 2		
13.	The digestive system	13.	RP Osmosis 2	12.	Physics of atoms	12.	Mini Quiz		
14.	Enzymes	14.	Active transport	13.	Radioactive decay	13.	Mains electricity and AC & DC		
15.	Optimal conditions for	15.	Transpiration	14.	Types of radioactive decay	14.	Plugs		
	enzymes	16.	Transpiration experiments (Part 1&2)	15.	Nuclear equations	15.	Power calculations		
16.	Testing for food groups 1	17.	Translocation	16.	Half life	16.	Work done calculations		
-	(R.Practical)	18.	Photosynthesis	17.	Modeling radioactive decay	17.	Equations practice (Optional)		
17.	Testing for good groups 2	19.	Limiting factors (Higher only)	18.	Irradiation and Contamination	18.	Recap of electromagnets		
	(R.Practical)	20.	Inverse square law (Higher only)	19.	Uses of radiation (Separate only)	19.	National Grid and Transformers		
18.	pH and Enzymes 1	21.	RP Photosynthesis 1	20.	Background radiation (Separate only)	20.	Transformers structure and equation		
	(R.Practical)	22.	RP Photosynthesis 2	21.	Evaluating hazards	-0.	(Separate only)		
19.	pH and Enzymes 2	23.	Using glucose and nitrogen in plants	22.	Nuclear Fission (Separate only)	21.	Transformers power equation (Separate		
	(R.Practical)	24.	Mini Quiz	23.	Nuclear Fusion (Separate only)		only)		
20.	Rates of reaction in the	25.	Tropisms (Separate only)	24.	Mini Quiz	22.	Solar System (Separate only)		
	body	26.	Plant hormones (Separate only)	25.	Particle model - density and states	23.	Life Cycle of a star (Separate only)		
21.	Diffusion	27.	RP Germination 1 (Separate only)	26.	RP investigating density	24.	Orbits (Separate only)		
22.	Diffusion and Surface	28.	RP Germination 2 (Separate only)	27.	Changes of state	25.	Changing Orbits (Separate only)		
22.	area (Practical)	29.	Carbon Cycle	27.	Heating and cooling graphs	26.	The Doppler effect (Separate only)		
23.	Diffusion in action	30.	Water cycle	28.	Latent heat	20.	The Big Bang and Red shift (Separate		
23. 24.	Kidneys and their	31.	Rate of Decay (Separate only)	30.	Specific heat capacity	27.	only)		
27.	function (Separate only)	32.	Biogas generators (Separate only)	30. 31.	RP investigating specific heat	28.	Dark Mass and Dark Energy (Separate		
25.	Kidneys and ADH	33.	Decay part 1 (Separate only) (R. Practical)	31.	Comparing LH and SLT (higher only	20.	only)		
25.	(Separate only)	33. 34.	Decay part 2 (Separate only) (R. Practical)	33.	Pressure in gases	29.	Black bodies and radiation on Earth		
26.	Treating Kidney failure	34. 35.	Biodiversity and human impact	33. 34.	Gas pressure part 2 (Separate only)	29.	(Separate only)		
20.	dialysis (Separate only)	35. 36.	Maintaining biodiversity	34. 35.			(separate offiy)		
27.	Treating Kidney failure	30. 37.	Food security (Separate only)	35. 36.	Pressure in liquids and hydaulics (Separate only)				
27.	transplant (Separate	57.	roou security (separate only)	30.	Pressure at different depths (Separate only) (Demonstration)				
	only)			27	· · · · · · · · · · · · · · · · · · ·				
	oniy)			37.	The Atmosphere (Separate only)	1			
				38.	Floating and sinking (Separate only)				

Summer 1	Summer 2					
	Topic: Humans and the Earth					
	Knowledge:					
othermic reactions	1. The Early Earth's Atmosphere					
nges Part 1	2. Theories of the atmosphere					
nges Part 2	3. The Greenhouse Effect					
	4. Evidence for the Greenhouse effect					
er only)	5. Effects of global warming					
and voltage (separate only)	6. Reducing our carbon footprint					
on-rechargeable batteries (separate only)	7. The Harmful effects of Combustion					
only)	8. Resources used by humans					
el cells (Separate only)	9. Potable Water					
eaction	10. Waste water and Sewage					
es of reaction	11. Evaluating potable water methods					
igher only)	12. RP Analysing water samples					
ction graphs	13. Mini Quiz					
effects of concentration on rates of reaction.	14. Phytomining and Bioleaching					
	15. Life Cycle Assessments					
	16. Reduce, Reuse, Recycle					
(Demonstration)	17. Ceramics and Composites (Separate only)					
igher only)	18. Polymers (Separate only)					
S	19. The Haber process 1 (Separate only)					
SS	20. Le Chatelier's Principle and the Haber Process (Separate					
arate only)	only)					
ligher only)	21. NPK Fertilisers (separate only)					
gher only)						
parate only)						
ion (Separate only)						
separate only)						
separate only)						
ne of a gas (Separate only)						
Separate only)						
eparate only)						

In Year 11, students explore how we can classify organisms based on their characteristics and how these classification groups have changed as our understanding of cells and DNA has developed. Students then sue their knowledge of DNA and inheritance from year 9 to look more broadly at how organisms have evolved through natural selection. Students then explore how s=humans have used their knowledge of inheritance and DNA to create organisms with desirable characteristics through both selective breeding and genetic modification. They will look at the benefits and implications of these methods and evaluate the impact on individual organisms and whole ecosystems. Students will then look at ways in which organisms are specially adapted to their environment with a focus on the ways in which organisms carry out homeostasis. Students will first explore the nervous system in more depth and focus on reflexes as a way of responding rapidly to harmful stimuli and will carry out an investigation into how our reaction time can be affected by different factors such as caffeine. Students then explore our endocrine system as a mechanism for carrying our homeostasis and draw comparisons between the two. Students will build a more indepth knowledge of glands, the hormones they produce and the affect they have on organs. Students will then look at both the control of blood glucose and control of the menstrual cycle in more depth. Separate students will also look at the role of hormones and kidneys in control of water. Finally, students will build on their knowledge of the menstrual cycle to explain how fertility treatment and embryo screening.

Unit	B5							
Unit title	Evolving Organisms							
Big question/ core	How do organisms grow and reproduce?							
concept	Core concept: Inheritance							
	Why are living things so diverse?							
	Core concept: Evolution							
	What are living things made of?							
	Core concept: Cellular basis							
Relevant end	 Organisms reproduce by passing their genetic information from one generation to the next. How an organism develops depends on its genome and its 							
points	environment.							
	 Organisms compete with and depend on other organisms for the materials and energy that cycle through ecosystems. A change to one population, or 							
	environmental condition can have a huge impact on biodiversity. The diversity of organisms, living and extinct, is the result of evolution by natural selection.							
Core substantive	Describe the groups used to classify organisms							
knowledge	Describe the process of natural selection							
	Interpret evolutionary tree diagrams							
	Describe the processes of selective breeding and genetic engineering							
	Describe the human nervous system and compare and contrast reflexes and conscious decisions							
	Describe the endocrine system and how it can be used to control glucose (and water – separate only).							
	Describe how hormones control the menstrual cycle and how these can be used to control/intervene with fertility.							
Core disciplinary	Biologists collect data in a variety of settings including field work. Variables in biology can be difficult to control.							
knowledge	 Different biologists study life at different levels. From biological models to population of organisms 							
	Biologists have to carefully consider how specimens are sourced and treated during research							
	Observations and data can be analysed and interpreted quantitatively and qualitatively							
	• A cycle of collecting and analysing data provides evidence that biologists use to develop and improve explanations, classification systems and models							
	• Biologists communicate about their work with a range of audiences within and beyond the scientific community, to facilitate evidence-informed debate and							
	decision-making.							

In Year 11 students will bring together knowledge from previous chemistry units and start to explore the way in which we release energy rom fossil fuels and the impact this has on the Earth. They will start by learning how crude is formed before drawing on earlier knowledge of mixtures to learn that crude oil is made of different hydrocarbons. Students will be introduced to alkanes and alkenes and will draw on their earlier knowledge of structure and bonding to explain their properties. They will also apply their earlier knowledge of drawing molecular structures in order to represent alkanes and alkenes. Students will be introduced to a new reaction called cracking and gain more practice representing substances using molecular structures and formulae. They will learn about combustion reactions and make links to earlier learning in both chemistry and biology to explain the impact of both complete and incomplete combustion on the Earth. Students are then introduced to polymers, having explored this in a biological context in year 9, and learn how to represent these from different monomers. Finally, separate students will explore the physical and chemical properties of alcohols, carboxylic acids and esters and carry out investigations to make observations on their reactions.

Unit	C5						
Unit title	Organic Chemistry						
Big question/	How does chemistry affect our world?						
core concept	Core concept: Chemical Earth						
	What is the Earth made of and how is it changing? Core concept: Dynamic Earth						
Relevant end	Substances can move within and between Earth's atmosphere, hydrosphere, geosphere and biosphere as part of large-scale Earth systems.						
points	Chemical substances produced by human activity are changing our planet.						
	 The structure of the earth is slowly changing. The Earth provides us with a rich source of resources 						
Core	Describe the composition of crude oil and how this can be separated into useful fractions.						
substantive	Describe the structure and properties of alkanes and alkenes.						
knowledge	Describe combustion reactions.						
	Explain the impact of the products of combustion reactions on the Earth.						
	Describe the reactions of organic compounds (separate only)						
Core	Chemists use models of the sub microscopic domain of substances to explain the properties and behaviour of substances.						
disciplinary	Chemists use a range of unique symbols, formula, nomenclature, diagrams and equations.						
knowledge	Substances can be classified into groups. This enables chemists to identify patterns and trends.						
	Data from chemical measurements can be used to identify trends.						
	 Provides evidence to test ideas. There are a range of qualitative and quantitative investigative techniques. 						
	Chemistry requires skilled use of specialised equipment. This includes chemical measurement.						

In year 11, students bring together knowledge of magnets, electrical current and forces to understand how electromagnets work. They will begin by learning what an electromagnet is before looking at ways that the strength of an electromagnet can increased. Higher tier students will also build on this further by exploring the motor effect and using Fleming's left-hand rule to make predictions about the direction of the force produced. Students will also develop their mathematical understanding of this relationship through use of the F = BIL equation. Separate students will then draw comparison between the motor and generator effect and learn how this is used in power stations to generate electricity as well as uses in devices such as a microphone and loudspeaker. This will require students to draw on knowledge from year 9 on energy resources and energy transfers. Finally, students will revisit the idea of transformers, this time through a quantitative lens through calculations using primary and secondary voltage.

Unit	P5					
Unit title	Electricity and Magnetism					
Big question/	What is electricity and magnetism?					
core concept						
Relevant end	 The movement of charge forms electric current and causes magnetic fields. We use electrical currents to power our society. 					
points						
Core	Describe how magnets can be used to generate electricity or movement.					
substantive	> Describe how the national grid is designed making use of electromagnetic induction and alternating currents (separate only).					
knowledge	Describe the production of static electricity in terms of electrons (Separate only).					
	Draw electric field patterns (Separate only).					
Core	Aims for the most fundamental explanations that apply in widest range of situations					
disciplinary	Explanations include tests which support or disprove the idea.					
knowledge	Explanations are based on observations and experimental measurements					
	Arguments are developed from data, discussed and debated					
	Many explanations use models to think with and use to make predictions					
	Many models can be expressed as mathematical formulas					

Year 11 Combined Science

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
1. Cells, specialisation &	Mock preparation	1. Collision theory, Ea & Catalysts	Mock preparation time.	Interleaved practice and	GCSE Exams
microscopy	<u>time.</u>	2. Factors affecting rate of reaction &		application to different	
2. Mitosis & stem cells		Calculating rate of reaction	Interleaved practice and	contexts	
3. Cell transport	1. Gravity & weight,	3. Reversible and DE, Energy changes	application to different	Address gaps in knowledge	
4. Organ systems & health	resultant forces	in RR	contexts	and build on links between	
5. Plant systems &	2. Forces & work done	4. Equilibrium & Le Chatelier's		different topics when applied	
photosynthesis	Hooke's law	5. Crude oil & Fractional distillation	Address gaps in knowledge and build on links between	to a range of scenarios:	
6. Respiration & exercise 7.	4. Distance &	6. Cracking	different topics when applied		
Communicable disease and	displacement	Pure substances, substances &	to a range of scenarios:	Biology Paper 1	
defence	5. Speed, velocity & DT	formulations		Chemistry Paper 1	
8. Vaccination, antibiotics, and	graphs	8. Chromatography & Gas tests	Biology Paper 2	Physics Paper 1	
drug development	6. Acceleration & VT	9. Atmosphere & changes	Chemistry Paper 2		
10. Atoms, compounds, mixtures,	graphs	10. Greenhouses gasses & human	Physics Paper 2		
subatomic	7. Newton's Laws	activities			
11. Periodic Table, E. structure,	8. Stopping, reactions &	11. Climate change, Carbon footprint			
Groups	braking dist	& pollutants		CCSE Evame hagin	
12. Covalent, ionic, metallic	9. Momentum	12. Sustainable development		GCSE Exams begin	
bonding, giant covalent	10. Transverse &	13. Potable water & wastewater			
13. Mass calculations	longitudinal, Wave	14. LCAs & recycling			
14. Mass calculations	properties	15. Vectors, scalars, contact & non-			
15. Reactivity series, extraction	11. Types of EM waves,	contact			
and redox	properties and uses	16. Homeostasis & the nervous			
16. Acids and alkali	12. Magnetic poles &	system			
17. Electrolysis	magnetic fields	17.Endocrine systems			
18. Exo and Endo	13. Electromagnetism	18.Reproduction systems			
20. Types of energy and	14. Fleming LHR, F=BIL	19.Sexual reproduction & meiosis			
resources	& motors	20.DNA and genome systems			
21. Electricity (circuits and		21. Variation & Evolution			
efficiency)		22. Selective breeding & genetic			
22. Electricity (power and		engineering			
national grid)		23. Evidence for evolution			
23. Calculations		24. Classification & Communities			
24. Heat (SHC & LH)		25. Abiotic factors & biotic factors			
25. Atoms & isotopes					
26. Half-life, uses and dangers of					
radiation					
27. Nuclear equation and types of					
decay.					

Year 11 Separate Science

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
 Cells Culturing Microorganisms Cell division Transport in cells Digestive system and enzymes Circulatory system Non-communicable disease Communicable disease Monoclonal antibodies Plant organisation and disease Plant organisation and disease Photosynthesis Respiration Atomic model Periodic table Metal & groups Ionic and metallic bonds Electrolysis Covalent bonding Quantative Chemistry 1 Quantative Chemistry 2 Metal extraction Acids Exothermic and endothermic Cells Energy stores (kinetic / Elastic / GPE) Energy changes and efficiency Electricity Power P=It E=P/t E=QV (two step practice) Static electricity Density and state change Heat calculations Pressure Radioactivity Half-lives Fission and fusion 	Mock preparation time. 1. Bonding recap 2. Crude oil and human impact 3. Alkanes and alkenes (drawing and prop) Demo testing for alkenes 4. Combustion 5. Fractional distillation and cracking 6. Alkene reactions 7. Alcohols and making alcohols 8. Carboxylic acids and Esters 9. Addition polymerisation and condensation polymerisation 10. Naturally occurring polymers	 Magnets and magnetic fields Electromagnets and their uses Motor effect FBIL The generator effect National grid and transformers and transformer structure Transformer power equation Static electricity Electric fields Radio waves Sound waves and uses of soundwaves Vector diagrams Orbits Moments Leavers and Gears Classification Natural selection and evolution Evidence of evolution Genotypes, phenotypes and genetic crosses Mendel Genetic modification and genetic engineering Inheritance The nervous system and reflex arcs Homeostasis Endocrine and negative feedback loops Controlling blood glucose Contraception IVF Embryo screening Comparing the hormonal and nervous system 	Mock preparation time. Interleaved practice and application to different contexts Address gaps in knowledge and build on links between different topics when applied to a range of scenarios: Biology Paper 2 Chemistry Paper 2 Physics Paper 2 Physics Paper 2	Interleaved practice and application to different contexts Address gaps in knowledge and build on links between different topics when applied to a range of scenarios: Biology Paper 1 Chemistry Paper 1 Physics Paper 1 GCSE Exams begin	GCSE Exams